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ABSTRACT “"‘4
' A
The equation - ':_.::
U = (U™)zz 2ER, >0 ,::;::.

u(-,0) = up
with m > 1 models the expansion of a gas or liquid with initial density uo in a one dimensional
porous medium. Denote by ¢ — s.(t) the vertical boundaries of the support of u. Caffarelli

and Friedman have shown that sx € C(ty,00) where t+ := sup{t : s:(t) = 5+(0)} is the
waiting time. Using their result we prove that
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Moreover, we show that the pressure v := u™~! is infinitely differentiable up to the free
boundaries s after the waiting time. Our proof is based on a priori estimates in weighted
norms which reflect the regularizing effect near the free boundaries.

AMS (MOS) Subject Classifications: 35K55, 35R35
Key Words: parabolic, degenerate, free boundary, regularity
Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

The equation stated in the abstract describes the expansion of a gas in a one dimen- :;

- sional porous medium. While existence of weak solutions can be obtained by standard energy &
methods, not much was known about regularity of the solution near the free boundaries. The E

‘ difficulty is that the equation degenerates at the boundary and thef"}nyperbolic" term becomes B
’ dominant :
K

We show in this report that despite of the degeneracy the free boundary i is s smooth with
the possible exception of a discontinuity in the derivative at thé-“waiting time”. “Our method

3 S

is based on energy estimates in weighted norms using some of the ideas in {6}. = ..%:. ... .7
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The responsibility for the wording and views expressed in this descriptive summary lies with
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C*®-REGULARITY FOR THE POROUS MEDIUM EQUATION
K. Héllig and H.-O. Kreiss

1. Introduction. We consider the porous medium equation

uy — (t™),, =0, z€ R, t >0,
u(-,0) = up

(1)

for m > 1 and continuous positive initial data uo with connected compact support.

It is well known [3,9,10] that problem (1) has a unique weak solution and that the support
of u(-, t) remains bounded for all ¢, i.e.

suppu(-,t) = [r(t), s(t)].

The curves r, s are Lipschitz continuous |7}, but in general not C 1 As was first observed by
Aronson [1] 7' (and similarly s’) can have a jump for t equal to '

t, := supf{t : r(t) = r(0)}.

Caffarelli and Friedman [4] proved that a classical solution of problem (1) exists up to the free
boundaries for ¢ > max(t,,t,). By considering the equation for v := u™~ ! (cf. (2.1) below)
they showed that

(i) wv¢,vz, vz are continuous on the set 02, := {(z,¢) : r(t) < z < s(t), t > t,}
(i) reCl(t,,o00)
(iii) r'(t) = — Byva(r(t),2), t > ¢t,.
The corresponding statement holds for the right free boundary s. In particular, the functions
in (i) are continuous on the closed support of u if

vo(r(0)) vo(s(0)) # O (2)

where vg := v(-,0). With the aid of an interesting idea of Gurtin, McCamy and Socolovsky (5]
it has been recently shown [6] that r € C*°(0,T] if vo is sufficiently smooth, (2) holds and T
is sufficiently small. However, this method does not yield regularity of v.

In this paper we obtain the following optimal regularity result.
Theorem. ve C®(f,), r € C*®(t,, ).
Our approach is different from the method in [6]; it is based on the smoothing effect of the

porous medium equation in a neighborhood of the free boundaries. We prove in section 2 the
following a priori estimate.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
National Science Foundation under Grant No. DMS-8351187.
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Proposition 1. Let u be a solution of (1) for which v € C*((2,) and assume that

8(0) — r(0) < 7!
x < vh(r(0)), Jvb| < k71 (3) .
lvo(r(0) + y) — vo(r(0))| < A(y), ¥ < &,

where x is a positive constant and ) is a smooth function with A(0) = 0, A’ > 0. Then, for
any k € N, there exist positive constants é,T, A such that

Irlk,ir/2m) + lvleaer) < A (4)
where Q(6,T) := {(z,t) : r(t) < z < r(t) + 6,T/2 < ¢t < T} and | |r,0 denotes the

norm on WX (). The constants 6,T,A depend on k, ) k; in addition, T, A depend on
|vol2k+4,r(0)+6/2,r(0) +x]-

In section 3 we show existence of smooth solutions for smooth data.
Proposition 2. If vy € C®(suppuo) and (2) holds, then v € C*(suppv) and r € C*(0, c0).

The Theorem follows from Propositions 1,2 by an approximation argument. Assume that
4 is a solution of problem (1). By the result of Caffarelli and Friedman, (i)-(iii) are valid for
o and 7. Let ty < t; < t;. For any 7 € [t1,12], vo := ©(-,7) satisfies the assumptions (3)
of Proposition 1 with a constant x and a modulus of continuity A which depend on ¥,¢,,t,
but not on 7. For each (fixed) 7 we approximate vy by a sequence of smooth functions vg,; €
C > (suppuo) for which (3) remains uniformly valid and which converge to vo in Leo (Suppuo).
In addition we require that (2) holds for v ; and

sSuppuvg,; = Suppvo
vo,j(z) > 0, r(0) < z < 5(0), (5)
SUP [Vo,jl2k+4,(r(0)+6/2,,(0)+x] < OO

J

Let (v;)!/(m=1) denote the solutions of (1) with initial data ug = (vo,;)'/(™~1). By Propo-
sition 2, v; € C*(suppv;). Moreover, the conclusion (4) of Proposition 1 is valid for v; and
the corresponding left free boundary r;, uniformly in j. Passing to the limit j — oo it follows
that

reWk|r+T/2,7+T)

veWE({(z,t):r(t) <z <r(t)+6 7+ T/2<t<7+T}).

Since k € N, 7 € |t;,t2] were arbitrary and in the interior of suppv the regularity is known,
the Theorem follows.

2. A priori estimates. Troughout this section we assume that u is a solution of (1.1)
for which v satisfies the assumptions of Proposition 1. Substituting u = v*/(™~1) in (1.1) we

obtain
Uy — MUV, — nv: =0

(1) '

U(', 0) = Yo
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where n := 1/(m — 1). The change of variables
y=2z-1(t), v(z,t) = wiy?)
transforms the left free boundary to the vertical axis {y = 0}. Since by (iii)
ye = ~r'(t) = nw,(0,¢)

the problem for w is
2 -
Wy — mwwyy - nwy + nwy (0, )wy =0

w(-,0) = wo := vo(- + £(0)). (2)

For the proof of Proposition 1 it is sufficient to show that
|83wlo,jo.61x|T/2,7) < A’y 5 < 2k. (3)

We need several auxiliary Lemmas.

Lemma 1. f: f(y)2dy < ¢ f(f y2(6721(y)? + /'(v)?) dy.
Proof. By scaling we may assume that 6 = 1. Then,

1 1
[ =t -2 [ ur
0 0
<107 412 [+ 2 [,
where the first term on the right hand side can be estimated by the standard Sobolev inequality.

Lemma 2. supoc,<; lvf(¥)?] < eafy y2(6721(y)? + f'(y)?) dy.
Proof. Again, by scaling, let § = 1. Then,

@ =10 - [ 10+ 281 1'(8) ay
<rar w2 f v [y,

and the Lemma follows from Lemma 1 and the standard Sobolev inequality.

Lemma 3. Let Q(4,T) :={0,6] x [0,T], 8Q := [0,6] x {0} U {6} x |0,T] and assume that
p = mingQ wy > 0. Then

min wy < minw, < maxw, < maxw,.
9Q Q Q aQ

Proof. Set n(t) := (p — ¢) exp(—et) with 0 < ¢ < p. We differentiate (2) with respect to y
and subtract n’ + en = 0. This yields

[wye — ne] + [-mwwyyy] + [((-m - 2n)w, + nwy (0,-))wyy) + [—en) = 0.
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Assume that wy (§,%) = n(¢) where
t:= sup{t:w,(-t) > n(t)}.

If (3,t) € Q\AQ all terms in square brackets are nonpositive. Since n # 0 this is not possible,
i.e. we must have n < wy on Q. Letting ¢ — 0 proves the first inequality of the Lemma and
the last inequality is proved similarly.

Lemma 4. If 26 < x, A(28) < /4, then there exist constants T and ¢z which depend on
K,6,k,|vo|2k+4,(5/2,x) Such that

—_ 1 <
G e~ ey My = M0
k/2 < wy(y,t) < 271, (y,t) € Q(6,T), (4)

|0y 0bw(é,t)| <e3, 20 +pu<2k+3, t<T.

Proof. The maximum principle is valid for problem (1.1), i.e. u5 < u7 implies that u~ < u*
and r~ > r*. By (1.3) and our assumption on 6,

vh(y) > 3x/4, y - 7(0) < 26.
Using this and (1.3),

vg 1= max{0, (y = r(0)(r(0) + 26 - )/2} < vo <
max{0, (y — r(0))(r(0) + 45~ - y)} =: vg.
For the solutions of (1.1) with initial data 3 = (vE)1/(m~1) the assertions (i)-(iii) are valid
with t, = 0. Therefore, by the above comparison principle,

c<v(yt)<e!
—c Mt <r(t) - r(0) < —ct

if 6/2<y<36/2, t <1 The constant ¢ depends on é,k. We choose T' < 1 so that
lr(t) - r(0)| < 6/4, t < T,

which also yields
c<w(y,t)<e ! if 36/4<y<56/4,t<T.

On the rectangle |35/4,56/4] x [0, T’ the problem (2) is nondegenerate and the last inequality
in (4) follows from parabolic regularity theory if T < T [8!. We set T := min{T’, A(6)/cs}.
Then

Aé)

lwy (6,2) — wy(8,¢)] < er
3

|wye(8,8")1 < A(6)

which yields the first two inequalities for (y,t) € dQ and therefore, in view of Lemma 3, also
for (y.t) € Q.




Proof of Proposition 1. Let 0=T_, < Tp < ... < Tak4+1 = T/2. We prove by induction
on [ that for sufficiently small é,

é T ¢
I+1 2 29l+2 2 < n <l < l. 5
1‘.“51?%(7‘,/0 v9, 'w(y,t)® dy + /;_' /; v?3, *w(y,t)® dydt < A"(l), 0<I<2k+1. (5)

The constants A" depend on «,6, ), k, T, |vo|2k+4,(5/2,x)- By Lemma 1,

&
183w (-,)?]o,j0,6) < € /0 Bw(-1)? + 31+ w(.,t)?
<ese 673 (A"(5 - 1) +24"()) + A"(F + 1))

which shows that (5) implies (3).

Since w and w, are bounded, inequality (5) is obviously valid for | = —1. We assume that
(5) holds for I < j and set Wi(y,t) := 8" 'w(y,t + T;_,). Differentiating (2) (5 + 1) times
with respect to y and replacing t by ¢t + T;_, we obtain

(W;)e ~mW_ 1 W,z — ((2n+ (5 + 1)m)Wo — nW,(0,-))W; 4y — Z W, W, = 0 (6)

1Svspsy
v+u=3+1

where c,, are constants which depend on 5. We multiply (6) by t?yW; and integrate over the
interval |0, 6],

%(/:t’yw,-’ dy), + m/:tzyw_,wf+l dy =
/ tyw}
+ mt26W_,(6,8)W;1(6,t)W;(6,t)
—m/tz(yW-|),Wj+,Wj (7)

+ / £2y](2n + (j + 1)m)Wo — nWo(0,)|W, 41 W,
+) euu / t2yW, W, W,.
The third term on the right hand side of (7) equals
—mt2(W_,(6,t) + 6Wo(6,t))W,(6,t)%/2+m / 3 (Wo + yW, /2)W7.

Proceeding similarly with the fourth term on the right hand side and using (1.3) and (4) we
deduce from (7) that

1 & me [

E(/ tzij’)‘ + —2—[ t2y2W}+l <
0 0
cecd + ./-tny

. (8)
- /tz[_mwo_+ (n+ () + 1)m/2)W, - EWO(O")]WJ?

1SvSps,
vep=j54+1

+ ¢ max |/t2yW,W“Wj|
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where the constant c; depends on x and the constant ¢5 depends on j. We estimate each of
the integrals appearing on the right hand side of (8) seperately. By the definition of W, and
the induction hypothesis

&
/ tyW;(y,t)* dy <
° (9)
f/tsz(y,t)zdy + f"I/yzai“w(y,HTj_l)’ dy.

By (4), [Wo(y,t) — Wo(0,t)] < 4A(6) and x/2 < W, (0,t) < 2. Therefore the term in square
brackets in the second integral on the right hand side of (8) can be estimated by

[.]> -, ifyg=0
U= I nk/4—cgA(6), fj>0 (10)

> nk/4 — cgA(6) ~ max{0,1 - 7)ce

where cs depends on j,x. Finally we estimate | [ t2yW, W, W;|. Set Wo(y,t) := Wo(y,t) -
Wo(0,t). Integrating by parts and using (4) it follows that

| [ eawws <
£oo(6,OW; (6,17 +| [ Waw?| -+ [ eyiow, W, < (11)
4)(6)c2 + 8A(6) / t*W? + 8A(6) / t2y’Wl,,
f é,¢ < 1. We have
I/tzyW,W,,WJ-| < c/tzwjz-{—c"lB.,“(t) (12)

where B, ,(t) := [t*y*W2W2. If v < p < j it follows from Lemma 2 that

é
B,.(t) < t’(orggslywu(y,t)zl) x (/0 YW, (y,t)? dy)

< et (f P24 w2,0) < ([ W)

herefore, using the induction hypothesis,

/T—T,—l B,u(t) dt < c267%(A"(v - 1) + A"(v)) x A" (k) < 74"(5 - 1) (13)
0
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Combining the estimates (9-12) it follows from (8) that

1 me

5(/t3ij2)t + —z’ftzyzwaz-n <
cacs + </t2wf + e 1b(t)
- (nk/4 - csA(6) — max(0,1 - 7)cq) / tZWf (14)
+ e5(4X(6)c3 + 8A(6) / t*W? 4+ 81(6) / 1’y’wl,))

+ cs(c/t"’Wj2 +e! max B,,(t))
P

where b(t) = [ y23I* w(y,t + T;_,)? dy. We choose &, ¢ so that
8csA(6) < 1;'-‘
€+ cgA(6) + BesA(6) + cse < nk/4.
Then we obtain from (14) that
1 me
5(/ W), + — /tzyzwsz
cacl + €770(1)

+ ¢g max(0,1 — j)/tsz?

+ cs¢” ! max B, (t).

IA

Since, induction hypothesis,

T-T,_,
[ e s 4o
0

it follows from (4) and (13) that for any t € [0, T - T;_,],

1 2 2 me [* 2 2
5 t'yW;(y,t)* dy + e Ty* W1 (y, 7)%dydr <
0

cacit+ e TA"(G - 1) +4t3k 72 4 ege Ter A"(5 - 1)t

This completes the induction step.
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3. Existence of smooth solutions. In this section we outline the proof of Proposition
iich justifies the approximation argument in the introduction. Similarly as in section 2
ransform the equation (2.1) to a fixed domain. Let £ € C*|0, 1] satisfy £’ <0, 0 < £ <
(y) = 1for0 <y <k, &(y) = 0for 26 < y < 1 and set n(y) := £(1 — y). Assuming
out loss that r(0) = 0, s(0) = 1 the change of variables

y=2x- f(y)f(t) - ﬂ(y)(s(t) - 1) (1)

v(z,t) = w(y,t)
sforms the free boundaries to the vertical lines {y = 0} and {y = 1}. One easily verifies
the transformed equation for w is

Wy — (m/Xz)wwvy - ("'/Xz)ws + ("/X)Ewu(oa‘)wv + (n/x)nw,(l,-)w,
+ (mxy/x})ww, =0, 0<y <1, t >0, (2)

w(-.0) = wp := vg

x(y,t)=1- nf’(y)[) wy(0,7) d7 — nn'(y)/(; wy(1,7) dr.

neighborhood of the left boundary {y = 0} we have x(y) = 1 and equation (2) coincides
equation (2.2). Therefore an analogous a priori estimate is valid.

ma 5. Assume that w € C*(|0,1] x [0,7T]) and that w{(0) wi(1) # 0. Then for any
i

1 T 1
(O?tanT,/o y(1 -~ y)aiw(y,t)z dy) + (A /0 y2(1 - y)za:,“w(y,t)z dydt) <ec (3)

e ¢ depends on I, T, vg.

proof of this Lemma is completely analogous to the proof of Proposition 1. Instead
ultiplying equation (2.6) by t>yW,, we multiply the corresponding equation obtained by
entiating (2) by y(1 - y)32*'w(y,t). Because of the weight y(1 — y) no boundary terms
ar when the appropriate terms are integrated by parts. The estimates are somewhat more
Jlicated because of additional terms involving x. But, these complications are merely of
rical nature.

Given the above a priori estimate it is straightforward to prove a corresponding local ex-
ce result via finite difference or finite element approximation. This completes the (outline
e) proof of Proposition 2.




1]
2]

3]
4]
5]

6]
7]
8]

(9]

[10]

.....
.........................

References

D. G. Aronson, Regularity properties of flows through porous media: A counterexample,
SIAM J. Appl. Math. 19 (1970), 299-307.

D. G. Aronson, L. A. Caffarelli, and J. L. Vazquez, Interfaces with a corner point in
one-dimensional porous-medium flow, Lefschetz Center for Dynamical Systems, report
#84-9.

P. Benilan, M. G. Crandall, and M. Pierre, Solutions of the porous medium equation in
R"™ under optimal conditions on initial values, Indiana Univ. Math. J.

L. Caffarelli and A. Friedman, Regularity of the free boundary for the one-dimensional
flow of gas in a porous medium, Amer. J. Math. 101 (1979), 1193-1218.

M. Gurtin, R. MacCamy and E. Socolovsky, A coordinate transformation for the porous
media equation that renders the free boundary stationary, Mathematics Research Center
Technical Summary Report #2560 (1983).

K. Hollig and M. Pilant, Regularity of the free boundary for the porous medium equation,
to appear in Indiana Univ. Math. J.

B. F. Knerr, The porous medium equation in one-dimension, Trans. Amer. Math. Soc.
234 (1977), 381-415.

G. Z. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and quasilinear equa-
tions of parabolic type, Translations of Mathematical Monographs 23 (1968).

O. A. Oleinik, A. S. Kalishnikov and Y-L. Chzou, The Cauchy problem and boundary
value problems for equations of the type of non-stationary filtration, Izv. Akad. Nauk
SSR Ser. Mat. 22 (1958), 667-704.

J. L. Vazquez, Asymptotic behavior and propagation properties of the one dimensional
flow of gas in a porous medium, Trans. Amer. Math. Soc. 277 (1983), 507-527.




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE pEptEAD INSTRUCTIONS
L!T'u‘iﬁ'f‘nﬁﬁ 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALGG NUMBER

2828 DALSE 1Y]

4. TITLE (and Subtitle)

8. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific

-]
C -REGULARITY FOR THE POROUS MEDIUM EQUATION reporting period
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(a)
K. H'éllig and H.-0. Kreiss DAAG29-80-C-0041
DMS-8351187
‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Pkogll.keol"LKtaErTT.NPuﬂu%lglCT TASK
Mathematics Research Center, University of
61 1 S ¢ Wi nsi Work Unit Number 1 -
0 Walnut Stree sconsin Applied Analysis
Madison, Wisconsin 53706
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
June 1985
See Item 18 below. 15. NUMBER OF PAGES
9
T4, MONITORING AGENCY NAME & ADDRESS(I{ ditferent from Cantrolling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

T5a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

176. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES
U. S. Army Research Office National Science Foundation

P. O. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709
19. KEY WORDS (Continue on reverae side if necesaary and identify by block number)
parabolic
degenerate
free boundary
regularity

20. ABSTRACT (Continue on reverse side if y and identifty by block number)
The equati-m

m
ut=(u)xx,xen,t>0

u(+,0) = u,

with m > 1 models the expansion of a gas or liquid with initial density u,

in a one dimensional porous medium. Denote by t + s,(t) the vertical
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20. ABSTRACT - cont'd.

boundarjes of the support of u. Caffarelli and Friedman have shown that
s, e Cl(tt,w) where ti := gup{t : si(t) = 81(0)} is the waiting time.
Using their result we prove that

s, € C (t,,= .
Moreover, we show that the pres;ure vV = um_1 is infinitely differentiable
up to the free boundaries s, after the waiting time. Our proof is based
on a priori estimates in wei;hted norms which reflect the regularizing
effect near the free boundaries.
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